ar X iv : 1 51 2 . 08 19 7 v 3 [ he p - ex ] 2 9 Fe b 20 16 Study of J / ψ → pp̄φ at BESIII

نویسندگان

  • H. S. Chen
  • H. Y. Chen
  • J. C. Chen
  • M. L. Chen
  • S. J. Chen
  • X. Chen
  • X. R. Chen
  • Y. B. Chen
  • H. P. Cheng
  • X. K. Chu
  • G. Cibinetto
  • H. L. Dai
  • J. P. Dai
  • B. Kloss
  • O. B. Kolcu
  • G. R. Liao
  • D. X. Lin
  • B. J. Liu
  • C. X. Liu
  • D. Liu
  • F. H. Liu
  • Fang Liu
  • Feng Liu
  • H. B. Liu
  • H. H. Liu
  • H. M. Liu
  • J. Liu
  • J. B. Liu
  • J. P. Liu
  • J. Y. Liu
چکیده

M. Ablikim, M. N. Achasov, X. C. Ai, O. Albayrak, M. Albrecht, D. J. Ambrose, A. Amoroso , F. F. An, Q. An, J. Z. Bai, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi , E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai , O. Cakir, A. Calcaterra , G. F. Cao, S. A. Cetin , J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, H. Y. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. Chen, X. R. Chen, Y. B. Chen, H. P. Cheng, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis , F. De Mori , Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, Z. L. Dou, S. X. Du, P. F. Duan, J. Z. Fan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli , L. Fava , O. Fedorov, F. Feldbauer, G. Felici , C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, X. Y. Gao, Y. Gao , Z. Gao, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco , M. H. Gu, Y. T. Gu, Y. H. Guan, A. Q. Guo, L. B. Guo, Y. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, X. Q. Hao, F. A. Harris, K. L. He, T. Held, Y. K. Heng, Z. L. Hou, C. Hu, H. M. Hu, J. F. Hu , T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, Y. Huang, T. Hussain, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, L. W. Jiang, X. S. Jiang , X. Y. Jiang, J. B. Jiao, Z. Jiao , D. P. Jin, S. Jin, T. Johansson , A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, P. Kiese, R. Kliemt, B. Kloss, O. B. Kolcu, B. Kopf, M. Kornicer, W. Kühn, A. Kupsc, J. S. Lange, M. Lara, P. Larin, C. Leng , C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, J. C. Li, Jin Li, K. Li, K. Li, Lei Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. M. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang , Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Zhiqing Liu, H. Loehner, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora , Y. J. Mao, Z. P. Mao, S. Marcello , J. G. Messchendorp, J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales , N. Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti , Y. Pan, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, L. Q. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, V. Santoro, A. Sarantsev , M. Savrié , K. Schoenning, S. Schumann, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, W. M. Song, X. Y. Song, S. Sosio , S. Spataro , G. X. Sun, J. F. Sun, S. S. Sun, Y. J. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan , E. H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, S. G. Wang, W. Wang, W. P. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. B. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, Z. Wu, L. Xia, L. G. Xia, Y. Xia, D. Xiao, H. Xiao, Z. J. Xiao, Y. G. Xie, Q. L. Xiu, G. F. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan , W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, W. L. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. N. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, Q. W. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti , B. S. Zou, J. H. Zou

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : n uc l - ex / 0 00 20 14 v 1 2 9 Fe b 20 00 1 Background Studies for the Neutral Current Detector Array in the Sudbury Neutrino Observatory

An array of 3 He-filled proportional counters will be used in the Sudbury Neutrino Observatory to measure the neutral-current interaction of neutrinos and deuterium. We describe the backgrounds to this detection method.

متن کامل

ar X iv : 0 80 2 . 25 80 v 1 [ m at h . G T ] 1 9 Fe b 20 08 3 - Dimensional Schlaefli Formula and Its Generalization

Several identities similar to the Schlaefli formula are established for tetrahedra in a space of constant curvature.

متن کامل

ar X iv : 0 80 2 . 43 52 v 1 [ m at h . A P ] 2 9 Fe b 20 08 Klein - Gordon - Maxwell System in a bounded domain ∗

This paper is concerned with the Klein-Gordon-Maxwell system in a bounded spatial domain. We discuss the existence of standing waves ψ = u(x)e in equilibrium with a purely electrostatic field E = −∇φ(x). We assume an homogeneous Dirichlet boundary condition on u and an inhomogeneous Neumann boundary condition on φ. In the “linear” case we characterize the existence of nontrivial solutions for s...

متن کامل

ar X iv : 0 80 1 . 07 10 v 2 [ m at h . C V ] 1 1 Fe b 20 08 KOPPELMAN FORMULAS AND THE ∂̄ - EQUATION ON ANALYTIC VARIETIES

Let Z be an analytic subvariety of pure codimension p of a pseudoconvex set X in C n. We introduce a formalism to generate weighted Koppelman formulas on Z that provide solutions to the ¯ ∂-equation. We prove that if φ is a smooth (0, q + 1)-form on Z with ¯ ∂φ = 0, then there is a smooth (0, q)-form ψ on Z reg with at most polynomial growth at Z sing such that ¯ ∂ψ = φ. The integral formulas a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016